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ABSTRACT
Recently, graph neural network (GNN) has emerged as a powerful
representation learning tool for graph-structured data. However,
most approaches are tailored for undirected graphs, neglecting the
abundant information in the edges of directed graphs (digraphs). In
fact, digraphs are widely applied in the real world and confirmed
to address heterophily challenges. Despite recent advancements,
existing spatial- and spectral-based DiGNNs have limitations due
to their complex learning mechanisms and reliance on high-quality
topology, resulting in low efficiency and unstable performance. To
address these issues, we propose Directed RandomWalk (DiRW), a
plug-and-play strategy for most spatial-based DiGNNs and also an
innovative model which offers a new digraph learning paradigm.
Specifically, it utilizes a direction-aware path sampler optimized
from the perspectives of walk probability, length, and number in
a weight-free manner by considering node profiles and topolo-
gies. Building upon this, DiRW incorporates a node-wise learnable
path aggregator for generalized node representations. Extensive
experiments on 9 datasets demonstrate that DiRW: ➀ enhances
most spatial-based methods as a plug-and-play strategy; ➁ achieves
SOTA performance as a new digraph learning paradigm. The source
code and data are available at https://github.com/dhsiuu/DiRW.
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1 INTRODUCTION
Graph neural networks (GNNs) have been widely used across node-
[16, 35, 37], link- [15, 30, 44], and graph-level tasks [17, 20, 31] and
achieve satisfactory performance. Therefore, this graph-based deep
learning technique holds great potential for applications, such as
recommendation [27, 41], financial analysis [4, 10, 25], and health-
care [2, 23]. Despite their effectiveness, existing methods often
overlook edge direction in natural graphs, leading to inevitable
information loss and limited performance upper bound.

Compared to undirected representations, digraphs are crucial for
modeling complex real-world topologies (e.g., web flow monitoring
and bioinformatics), capturing more intricate node relationships.
Additionally, the recently proposed A2DUG [22], Dir-GNN [26] and
ADPA [28] reveal a key insight: Edge direction offers a new perspec-
tive for addressing the topological heterophily challenges that plague
graph learning. Despite growing attention, DiGNNs are still in their
infancy and face the following inherent limitations: ➀ Spatial-based
methods often stack multiple convolution layers with separate
learnable parameters for out-edges and in-edges, resulting in over-
smoothing concerns [40] and high computational costs [8, 13, 47].
➁ Spectral-based methods heavily rely on high-quality directed
topology [32, 45], and without this, extreme eigenvalues inevitably
lead to sub-optimal performance. Strict theoretical assumptions
also limit practical deployment in complex scenarios. Therefore,
developing a more efficient paradigm for digraph learning is urgent.

To enhance the usability of DiGNNs, this paper focuses on spatial-
based methods and proposes a novel (directed) path-based learning
mechanism (Di)PathGNNs. As we all know, the entanglement of ho-
mophily and heterophily, where connected nodes exhibit intricate
feature distributions and labels, has recently posed a significant
challenge [19, 21, 24, 46]. Researchers strive to achieve robust learn-
ing within this complex topology. In this context, compared to the
traditional message-passing (i.e., neighbor expansion with strict
spatial symmetry that disregards edge direction), we highlight the
following advantages of DiRW to further clarify the motivation
of our study: ❶ Edge Direction and Node Order. The core of
DiPathGNNs lies in performing well-designed random walks for
each node, treating the paths as node-wise sequences. Advantage:
DiRW fully considers edge direction and preserves the order of nodes
within the walking paths, which is crucial for capturing structural
insights. ❷ Adaptive Expansion of Node Receptive Fields. Di-
PathGNNs adaptively extend hop-based neighbors to path-based
neighbors by considering the characteristics of random walk, in-
corporating more homophilous signals. Advantage: DiRW ensures
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Figure 1: Interruption issue of DiSRW on digraphs.

message aggregation among nodes with the same label, equivalent
to data augmentation and highlighting label-specific positive signals
for prediction. ❸ Path-based Message Aggregation. Based on
the above homophily-aware paths, DiPathGNNs aggregate these
messages for predicting each node through a learnable mechanism.
Advantage: DiRW facilitates the dense aggregation of direction-aware
homophilous information, thus enhancing node prediction.

Despite recent advancements in PathGNNs [11, 29, 38], their
walk strategies are tailored for undirected graphs, lacking gener-
alizability. Furthermore, the complex relationships inherent in di-
rected topology pose unique challenges to the naive random walks,
necessitating further investigations to develop fine-grained walk
rules. To further elucidate, we present empirical analyses in Fig. 1-2
that demonstrate these limitations and offer key insights.

◆ Limitation 1: Neglect of edge directions. PathGNNs often
fail to account for the edge direction. Utilizing directed simple ran-
dom walks (DiSRW) on digraphs inevitably leads to interruptions
when encountering nodes lack outgoing edges. To investigate and
visualize this limitation, we employ DiSRW and initiate a walk
from each node on four digraphs. As the walk length increases, we
record the proportion of complete paths out of the total sequences,
as depicted in Fig. 1(a). To mitigate the impact of cycles within the
digraph, we also devise an DiSRW that excludes cycles and conduct
the same experiment, as shown in Fig. 1(b).

✰ Key Insight 1:Walking strictly along the edge directions leads
to severe walk interruption problems. The non-strongly connected
nature of digraphs causes most walks to show a sharp decline in
complete paths after just five steps, indicating that they fail to
gather extensive information beyond the immediate neighborhood
of the starting node. Additionally, removing the influence of cycles
results in an even greater decline in uninterrupted sequences.

◆ Limitation 2: Coarse-grained walk strategies. PathGNNs
treat walk number and length as hyperparameters, uniformly apply-
ing them across all nodes. This one-size-fits-all approach overlooks
the distinct contexts of nodes within complex topology. To further
investigate this, we conducted an in-depth analysis of the effects of
varyingwalk numbers (Fig. 2(a)) andwalk lengths (Fig. 2(b)) on node
classification. We utilize undirected SRW as the sampling strategy,
and utilize two MLPs to generate path embeddings from the nodes
along the sampled paths and aggregate node embeddings from
multiple paths associated with the same node. Node homophily
is calculated as the ratio of the number of first-order neighbor-
ing nodes sharing the same label to the total number of first-order
neighbors, with the top 50% of nodes by homophily scores classified
as homophilous nodes and the remains as heterophilous nodes.
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Figure 2: Performance of SRW on digraphs WikiCS (Ho-
mophilous, Upper) and Actor (Heterophilous, Lower).

✰ Key Insight 2: Higher walk numbers facilitate heterophilous
nodes, while longer walk lengths benefit homophilous nodes. Increas-
ing walk numbers enhances predictions for heterophilous nodes by
enabling a comprehensive exploration of their complex topologies.
In contrast, homophilous nodes can be accurately represented with
fewer walks due to their uniform neighborhood structure. Excessive
walks in such case raise concerns regarding over-smoothing and
time and space complexity. Regarding walk length, heterophilous
nodes are often surrounded by noisy environments, where longer
walks risk incorporating irrelevant information. Conversely, ho-
mophilous nodes benefit from longer walks as they gather a broader
range of relevant information, offering a clearer surrounding views.

Inspired by the above key insights, we propose Directed Random
Walk (DiRW), which can be viewed as a plug-and-play directed
walk strategy for PathGNNs or a new digraph learning paradigm.
Specifically, DiRW first designs a direction-aware walk strategy
to identify potential neighbor relationships (motivated by Key
Insight 1). It then fine-tunes walk numbers and lengths on a node-
adaptive basis (motivated byKey Insight 2). Finally, DiRWemploys
a node-wise learnable path aggregator to represent node embed-
dings, breaking the constraints of message-passing mechanisms.

Our contributions. ➀ Novel Perspective. This paper is the first
to introduce DiPathGNN and highlight its advantages, emphasizing
the need for fine-grained walking strategies in digraphs through
valuable empirical studies. ➁ Plug-and-play Strategy. We present
DiRW, which customizes walk probabilities, lengths, and numbers
for each node, seamlessly integrating with any DiPathGNN to en-
hance performance. ➂ New DiGNN. DiRW also serves as a new
learning architecture for digraphs, featuring a pre-processed opti-
mized path sampler and a well-designed node-wise learnable path
aggregator. ➃ SOTA Performance. Experiments demonstrate that
DiRW improves node classification by 2.81% as a plug-and-play
strategy and enhances link prediction by 0.82% as a novel DiGNN.
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2 PRELIMINARIES
2.1 Notation and Problem Formulation
We consider a digraph G = (V, E) with |V| = 𝑛 nodes and |E | =𝑚
edges, where each node has a feature of size 𝑓 and a one-hot label
of size 𝑐 . The feature and label matrices represented as X ∈ R𝑛×𝑓
and Y ∈ R𝑛×𝑐 . The G is described by an asymmetrical adjacency
matrix A, where A(𝑢, 𝑣) = 1 if (𝑢, 𝑣) ∈ E, and 0 otherwise. The goal
of the semi-supervised node classification is to predict the labels
for unlabeled nodes with the supervision of labeled nodes.

2.2 Directed Graph Neural Networks
2.2.1 Spatial-based Methods. To capture the asymmetric topology
of digraphs, some spatial-based methods follow the strict symmetric
message-passing paradigm in the undirected setting [5, 9, 39]. How-
ever, it is crucial to account for the directionality of the edges when
aggregating messages. Specifically, for the current node 𝑢 ∈ V ,
the model learns weights to combine the representations of its
out-neighbors (𝑢 → 𝑣) and in-neighbors (𝑣 → 𝑢) independently:

H(𝑙 )𝑢,→ =Agg
(
W(𝑙 )→ , Prop

(
X(𝑙−1)𝑢 ,

{
X(𝑙−1)𝑣 ,∀(𝑢, 𝑣) ∈ E

}))
,

H(𝑙 )𝑢,← =Agg
(
W(𝑙 )← , Prop

(
X(𝑙−1)𝑢 ,

{
X(𝑙−1)𝑣 ,∀(𝑣,𝑢) ∈ E

}))
,

X(𝑙 )𝑢 = Com
(
W(𝑙 ) ,X(𝑙−1)𝑢 ,H(𝑙 )𝑢,→,H

(𝑙 )
𝑢,←

)
,

(1)

where the Propagation function Prop (·) gathers and distributes
feature from neighbors, and the Aggregation function Agg (·) com-
bines the feature depending on the learnable parameter matrix
W(𝑙 ) . Building upon this, recent advances in DiGNNs further refine
the message-passing scheme to capture the inherent directionality
of the digraph. DGCN [33] incorporates both first- and second-
order neighbor proximity into the message aggregation process.
DIMPA [8] expands the receptive field by aggregating features from
𝐾-hop neighborhoods. Inspired by the 1-WL graph isomorphism
test, NSTE [13] tailors the message propagation to the directed
nature of the graph. DiGCN [32] leverages neighbor proximity to
increase the receptive field and proposes a digraph Laplacian based
on personalized PageRank. ADPA [28] adaptively explores directed
patterns to conduct weight-free propagation and employs two hier-
archical node-wise attention mechanisms to learn representations.

2.2.2 Spectral-based Methods. Spectral-based approaches for the
DiGNN depart from the strict symmetric message-passing used
for undirected graphs [7, 36]. The core of spectral-based DiGNNs
is to leverage a symmetric or conjugated digraph Laplacian L𝑑 ,
which is constructed based on the directed adjacency matrix A𝑑 .
This symmetric Laplacian L𝑑 allows the application of spectral
convolution operations, which can be formally represented as a
function of the eigenvalues and eigenvectors of L𝑑 . Specifically, the
layer-wise node embeddings X(𝑙 ) are computed via a first-order
approximation of Chebyshev polynomials, leveraging the spectral
decomposition of the symmetric digraph Laplacian.

L𝑑 = DGS(A𝑑 , 𝛼, 𝑞),

X(𝑙+1) = Poly(L𝑑 )MLP(X(𝑙 ) ),
(2)

where DGS(·) is the digraph generalized symmetric function with
parameters and Poly(·) is a polynomial-based approximationmethod.

Building on this, DiGCN [32] proposes a 𝛼-parameterized stable
state distribution based on the personalized PageRank to achieve
the digraph convolution. MagNet [45] utilizes 𝑞-parameterized com-
plex Hermitian matrix to model directed information in digraphs.
MGC [43] adopts a truncated variant of PageRank, designing low-
pass and high-pass filters tailored for homogeneous and heteroge-
neous digraphs. LightDiC [15] decouples graph propagation and
feature aggregation for scalability in large-scale scenarios.

2.3 Path-based Graph Neural Networks
PathGNNs offer an effective approach to capture the intricate graph
patterns by sampling and aggregating information along paths. For
instance, GeniePath [18] introduces an adaptive path layer that
navigates the exploration of both the breadth and depth of the
node’s receptive fields. SPAGAN [42] leverages the shortest paths
and applies path-based attention mechanisms to obtain node em-
beddings. PathNet [29] utilizes a maximal entropy-based random
walk strategy to capture the heterophilous and structural informa-
tion. RAWGNN [11] employs Node2Vec [6] to simulate both BFS
and DFS, capturing both homophily and heterophily information.
PathMLP [38] designs a similarity-based path sampling strategy to
capture smooth paths containing high-order homophily.

3 METHOD
Building upon the key insights discussed in Sec. 1, we now present
our DiRW model, which is composed of two principal components:
the optimized path sampler and the node-wise learnable path aggre-
gator. The architecture of the model is depicted in Fig. 3. Specifically,
drawing upon Key Insight 1, DiRW is initiated with a direction-
aware path sampling strategy in Sec. 3.1.1. Furthermore, we intro-
duce a multi-order walk probability scheme in Sec. 3.1.2. Guided
by Key Insight 2, we evaluate the quality of walk sequences by
introducing the homophily entropy to customize the walk length
in Sec. 3.1.3. In Sec. 3.1.4, we propose a weight-free aggregation
mechanism for the path embedding. We also tailor walk numbers in
Sec. 3.1.5 by assessing the information richness of sampled walks.
In the learning phase, we integrate an attention mechanism to
learn the importance of each walk sequence in Sec. 3.2.1. Culmi-
nating in Sec. 3.2.2, we utilize a linear layer to distill the final node
representations, applied to node classification and link prediction.

3.1 Optimized Path Sampler
3.1.1 Direction-aware Path Sampler. In DiRW, edge directionality
governs the walk trajectory through the direction-aware sampling
protocol that dynamically adapts to node connectivity patterns.
This critical stage is tasked with determining the destination set for
each walk, which is essential for calculating the node probabilities
and ensuring the continuity of the walk without interruptions.

Specifically, when the walk encounters a sink node (node with
empty in-neighborhoods), it strategically transitions to its out-
neighbors. Conversely, when encountering a source node (node
lacking out-edges), thewalk remains confined to its in-neighborhood.
This approach effectively circumvents the issue of walk termina-
tion at nodes with unidirectional connectivity, which is mentioned
in Key Insight 1. For nodes that possess both incoming and out-
going edges, a more nuanced strategy is needed to balance the
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edge presence and directionality. Drawing inspiration from the
magnetic Laplacian [45], DiRW introduces a direction control pa-
rameter 𝑞 ∈ [0, 1] with a uniformly sampled threshold 𝑟 ∈ [0, 1]
to determine the successor selection. If 𝑟 > 𝑞, the walk proceeds
directionally to out-neighbors, whereas 𝑟 ≤ 𝑞 permits bidirectional
exploration considering both the in-neighbors and out-neighbors.
This mechanism interpolates between strict directionality preser-
vation (𝑞 = 0) and undirected-like exploration (𝑞 = 1), while pre-
venting walk termination at unidirectionally connected nodes.

3.1.2 Multi-order Walk Probability. The computation of walk prob-
abilities in DiRW is a nuanced process that seamlessly integrates
both the topological structure and node profiles, enabling DiRW
to delve into the complexities of both high-order and one-order
homophily within heterophilous graphs.

Topology-based High-order Probability. DiRW uncovers
high-order homophily information which is often embedded within
heterophilous graphs [38] by strategically prioritizing nodes with
few common neighbors, thus bridging to distant areas of the graph.
The topology-based high-order probability P𝑡𝑜𝑝𝑜𝑢 is inversely pro-
portional to the number of common neighbors Com(𝑢, 𝑣) and nor-
malized by the degree Deg(𝑣) of the candidate node 𝑣 :

P𝑡𝑜𝑝𝑜𝑢 (𝑣) = 1 − Com (𝑢, 𝑣) + 1
Deg(𝑣) , if (𝑢, 𝑣) ∈ E . (3)

Feature-based One-order Probability. From the feature stand-
point, DiRW captures one-order homophily by favoring walks to-
wards neighbors withmore similar features, which indicate stronger
homophily. The feature-based one-order probability P𝑓 𝑒𝑎𝑡𝑢 is cal-
culated based on the cosine similarity between the features of the
current node 𝑢 and candidate node 𝑣 :

P𝑓 𝑒𝑎𝑡𝑢 (𝑣) = cos (X𝑢 ,X𝑣) , if (𝑢, 𝑣) ∈ E . (4)

The transition probability from node 𝑢 to node 𝑣 in a walk step
is determined by combining the topology-based and feature-based
probabilities, normalized by a softmax function:

P𝑑𝑠𝑡𝑢 (𝑣) = Softmax
(
P𝑡𝑜𝑝𝑜𝑢 (𝑣) + P𝑓 𝑒𝑎𝑡𝑢 (𝑣)

)
. (5)

Recognizing that the softmax scales vary with the walk directions,
and we pre-compute P𝑡𝑜𝑝𝑜 and P𝑓 𝑒𝑎𝑡 to ensure efficiency.

3.1.3 Homophily Entropy-based PersonalizedWalk Length. In DiRW,
the walk length is dynamically determined based on homophily
entropy rather than being predefined and fixed. Traditional ho-
mophily metrics predominantly focus on immediate neighborhood
information, providing a limited view of the walk sequence’s quality.
To address this limitation, we introduce a novel metric Homophily
Entropy, which assesses the walk sequence quality based on feature
similarity among nodes in the sequence. Our objective is to ensure
sampled nodes in the walk sequence have a strong homophilous
relationship with the originating node, enriching the aggregated
information with relevance to it. We first convert the walk sequence
into a homophily label sequence, represented as:

𝑆ℎ𝑜𝑚𝑜 (𝑖) = I
(
X𝑆𝑤𝑎𝑙𝑘 (𝑖 ) ≠ X𝑆𝑤𝑎𝑙𝑘 (0)

)
· 𝑖, (6)

where I(condition) equals 1 if the condition is met and 0 otherwise.
𝑆𝑤𝑎𝑙𝑘 (𝑖) denotes the 𝑖-th node in the walk sequence, and 𝑆ℎ𝑜𝑚𝑜 (𝑖)
is the corresponding homophily label. By applying the Shannon
entropy [14] on 𝑆ℎ𝑜𝑚𝑜 , we derive the homophily entropy:

𝐻ℎ𝑜𝑚𝑜

(
𝑆𝑤𝑎𝑙𝑘

)
= 𝐻

(
𝑆ℎ𝑜𝑚𝑜

)
= −

𝑘∑︁
𝑖=1

𝑝 (𝑖) log 𝑝 (𝑖), (7)

where 𝑝 (𝑖) represents the probability of encountering 𝑆ℎ𝑜𝑚𝑜 (𝑖)
in 𝑆ℎ𝑜𝑚𝑜 and 𝑘 denotes the length of the sequence. Our analysis
indicates that a lower homophily entropy corresponds to a higher
walk sequence quality.
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Table 1: The statistician of the experimental datasets.

Characteristics Datasets #Nodes #Edges #Features #Node Classes #Train/Val/Test #Description

Directed-Homophily

CoraML 2,995 8,416 2,879 7 140/500/2,355 citation network
CiteSeer 3,312 4,591 3,703 6 120/500/2,692 citation network
WikiCS 11,701 290,519 300 10 580/1,769/5,847 weblink network

Amazon-Computers 13,752 287,209 767 10 200/300/12,881 co-purchase network
ogbn-arxiv 169,343 2,315,598 128 40 91k/30k/48k citation network

UnDirected-Homophily ogbn-products 2,449,029 61,859,140 100 47 196k/49k/2204k co-purchase network

Directed-Heterophily
Chameleon 890 13,584 2,325 5 48%/32%/20% wiki-page network

Actor 7,600 26,659 932 5 48%/32%/20% actor network
Rating 24,492 93,050 300 5 50%/25%/25% rating network

This entropy metric serves for dynamically determining node-
specific walk lengths. We start with a predefined minimum walk
length 𝑙𝑚𝑖𝑛 to guarantee the adequate information acquisition. Sub-
sequent walk persists until two consecutive homophily entropy in-
crements, signaling the heterophilous neighborhood. This adaptive
scheme aligns with Key Insight 2, which explicitly accommodates
nodes with homophilous neighborhoods.

3.1.4 Weight-free Path Encoding. To address the varying influence
of nodes along a path, DiRW uses an exponential decay function to
assign weights and compute the path embedding:

h(𝑙 )𝑢 =

𝑘∑︁
𝑖=1

𝛾𝑖∑𝑘
𝑗=1 𝛾

𝑗
X
𝑃
(𝑙 )
𝑢 (𝑖 )

, (8)

where 𝛾 ∈ (0, 1) represents the decay parameter and 𝑃 (𝑙 )𝑢 denotes
the 𝑙-th sampled path of node 𝑢. This weight-free aggregation
mechanism allows for the integration of the sampling into the pre-
processing stage, which substantially reduces the computational
complexity during training. Moreover, by giving greater signifi-
cance to nodes closer to the originating node, the exponential decay
mechanism effectively captures the sequential information inher-
ent in the walk sequence, overcoming the constraints of uniform
weighting often found in message-passing approaches [12].

3.1.5 Adaptive Walk Numbers. In DiRW, gathering comprehensive
context is essential, which influences the walk numbers per node.
This is determined by assessing the Information Richness, measured
by the average of sampled path embeddings. To avoid early walk
termination, a minimum walk number 𝑛𝑚𝑖𝑛 is set. After each walk,
DiRW computes the L2 norm of the Information Richness difference
between the current and previous sampled sequences:

Δ =

�����
����� 1𝐿 𝐿∑︁

𝑙=1
h(𝑙 )𝑢 −

1
𝐿 − 1

𝐿−1∑︁
𝑙=1

h(𝑙 )𝑢

�����
�����
2

, 𝐿 > 𝑛𝑚𝑖𝑛, (9)

where 𝐿 is the number of sampled path sequences.
If Δ falls below the predefined threshold 𝛿 , it indicates that the

sampling has reached a saturation point, beyond which additional
walks are unlikely to contribute substantially to the information
richness. In such cases, the walk is stopped to avoid further unneces-
sary and redundant sampling, improving the information gathering
efficiency and reflecting Key Insight 2: heterophilous nodes are of-
ten characterized by more intricate neighborhoods and necessitate
more walks to amass sufficiently rich information.

3.2 Learnable Path Aggregator
3.2.1 Attention-based Node Encoding. After the pre-processing
sampling phase, DiRWharnesses an attentionmechanism to discern
and weigh the informativeness of various path embeddings. This
process is pivotal for constructing node embeddings that are rich
in relevant contextual information.

Specifically, for each node 𝑢, DiRW initiates the encoding of
the sampled paths h𝑢 through a pair of linear layers, interspersed
with a LeakyReLU activation function. The encoded representation
e𝑢 is subsequently processed through a softmax function to yield
attention scores 𝛼𝑢 . The final node embedding z𝑢 is then computed
as a weighted aggregation of the path embeddings h(𝑖 )𝑢 , with the
weights being the attention scores 𝛼𝑖𝑢 , articulated as follows:

e𝑢 = MLP2 (LeakyReLu (MLP1 (h𝑢 ))) ,

𝛼𝑢 = Softmax (e𝑢 ) , z𝑢 =

𝐿∑︁
𝑙=1

𝛼𝑙𝑢h
(𝑙 )
𝑢 .

(10)

3.2.2 Node Classifier. With the node embeddings z𝑢 at hand, DiRW
deploys an MLP to tackle the node classification task. The training
process is directed by the cross-entropy loss as follows:

ŷ𝑢 = Softmax (MLP3 (z𝑢 )) , L = − 1
|V𝑙 |

∑︁
𝑖∈V𝑙

Y𝑖 log ŷ𝑖 , (11)

where V𝑙 represents the training set. Y𝑖 and ŷ𝑖 are the one-hot
encoded true label and the predicted label of node 𝑖 , respectively.

In the link prediction task, DiRW estimates the probability of
edges between node pairs using anotherMLP. The input to this MLP
consists of the concatenated embeddings of the node pairs, allowing
the model to leverage the feature information from both nodes. The
training process is also guided by the binary cross-entropy loss.

4 EXPERIMENTS
In this section, we conduct a comprehensive evaluation of our DiRW,
structured to address five critical research dimensions: Q1: Can
DiRW establish superior performance as both a new DiGNN and a
plug-and-play strategy? Q2: If DiRW proves effective, what archi-
tectural characteristics contribute to its enhanced performance?Q3:
How does DiRW’s time complexity compare with baseline methods
in practical deployment scenarios? Q4: How does the hyperparam-
eters sensitivity and robustness of DiRW manifest? Q5: How does
a comparative analysis of path quality between DiRW and existing
PathGNNs inform its structural learning advantages?
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Table 2: Model performance (%) as a new DiGNN in node classification. The best result is bold . The second result is underlined.

Type Models CoraML CiteSeer WikiCS Amazon Chameleon Actor Rating Arxiv Products RankComputers

Undirected GCN 84.48±0.17 65.26±1.07 78.98±0.49 83.26±0.51 40.93±1.24 30.96±0.45 43.37±0.13 67.80±0.07 73.3±0.07 5.67
GNNs GAT 83.73±0.47 63.12±1.06 79.35±0.28 80.16±2.32 40.82±2.46 30.29±0.37 45.03±0.50 67.79±0.24 OOM 7.44

DGCN 81.27±0.58 64.66±0.65 78.71±0.19 82.95±1.13 41.96±1.00 30.87±0.38 44.24±0.28 OOT OOM 8.00

Spatial NSTE 80.06±0.89 62.99±1.08 77.58±0.29 78.50±1.87 40.31±1.87 31.14±0.46 45.31±0.15 64.40±0.94 OOT 9.78

DiGNNs DIMPA 79.77±0.66 60.88±1.08 78.58±0.27 77.80±1.42 40.41±1.88 30.84±0.73 41.58±0.17 65.89±0.22 72.89±0.13 10.67
Dir-GNN 79.92±1.26 63.74±0.87 79.04±0.26 81.34±0.92 41.96±1.95 30.12±0.65 43.74±0.10 64.26±0.48 72.93±0.17 8.33
ADPA 79.10±1.56 65.01±2.29 79.43±0.92 73.25±4.26 41.66±3.07 35.29±0.82 44.90±0.62 64.28±0.56 OOT 7.67

DiGCN 80.81±0.52 62.38±0.28 79.30±0.32 80.02±1.52 41.24±1.67 34.30±0.89 45.99±0.28 65.38±0.47 OOM 7.11

Spectral DiGCNappr 80.65±0.40 62.05±0.59 78.54±0.32 81.53±1.27 40.93±2.49 30.99±0.49 40.46±0.20 61.57±0.56 73.51±0.05 9.33

DiGNNs MagNet 80.45±0.46 65.63±1.69 79.19±0.20 83.41±0.99 42.78±0.63 31.39±0.53 45.97±0.71 68.22±0.25 74.21±0.06 3.78
MGC 82.66±1.01 64.78±1.05 77.42±0.28 81.26±0.80 41.34±3.29 35.75±0.41 42.01±0.36 66.73±0.17 59.86±3.20 7.11

LightDiC 82.67±1.10 64.36±0.35 78.02±0.21 79.87±0.68 42.68±1.61 30.59±0.50 40.53±0.48 63.41±0.26 64.85±0.07 8.78

RAWGNN 78.35±0.90 59.94±0.38 76.76±0.31 72.76±0.67 41.24±3.34 34.71±0.80 44.07±0.32 OOM OOM 11.89
PathGNNs PathNet 66.61±6.83 61.41±1.93 75.71±0.66 68.78±2.13 38.44±3.21 36.67±0.92 39.15±0.40 OOM OOM 13.22

DiRW 84.24±0.19 65.88±1.41 79.87±0.08 83.50±0.68 43.92±0.23 36.42±0.46 46.13±0.39 68.51±0.18 75.19±0.47 1.22

Table 3: Model Performance (%) as a plug-and-play strategy on PathGNNs in node classification.

Models CoraML CiteSeer WikiCS Amazon Chameleon Actor Rating ImprovementComputers

RAWGNN 78.35±0.90 59.94±0.38 76.76±0.31 72.76±0.67 41.24±3.34 34.71±0.80 44.07±0.32 ⇑ 4.34%RAWGNN+DiRW 82.67±0.26 64.54±0.75 77.71±0.27 76.33±1.02 43.30±1.31 35.55±0.39 45.66±0.63
PathNet 66.61±6.83 61.41±1.93 75.71±0.66 68.78±2.13 38.44±3.21 36.67±0.92 39.15±0.40 ⇑ 1.25%PathNet+DiRW 68.25±0.77 62.66±0.89 76.21±0.35 69.45±0.97 38.88±1.04 37.14±0.87 39.22±0.24
DiRW 84.24±0.19 65.88±1.41 79.87±0.08 83.50±0.68 43.92±0.23 36.42±0.46 46.13±0.39 —

4.1 Experimental Setup
4.1.1 Datasets. Our comprehensive evaluation spans 9 benchmark
datasets encompassing both directed and undirected graphs with di-
verse homophily characteristics. We have documented the detailed
information of these datasets in the Tab. 1.

4.1.2 Baselines. Our experiment leverages diverse GNNs as com-
parative benchmarks, which can be categorized as follows: (i) tra-
ditional undirected approaches: GCN [12], GAT [34]; (ii) directed
spatial methods: DGCN [33], NSTE [13], DIMPA [8], Dir-GNN [26],
ADPA [28]; (iii) directed spectral methods: DiGCN [32] and its
variant DiGCNappr, MagNet [45], MGC [43], LightDiC [15]; (iiii)
PathGNNs: RAWGNN [11] and PathNet [29]. To minimize random-
ness and ensure fair comparisons, we repeated each experiment 10
times to obtain unbiased performances. Moreover, we transform
the digraph to undirected graph and feed it into undirected GNNs.

4.1.3 Hyperparameter Settings. The hyperparameters in the base-
line GNNs are set following the original paper if available. Other-
wise, we perform a hyperparameter search via the Optuna [3]. In
DiRW, we perform a grid search for the minimum walking length
ranging from 2 to 6, and for the minimum walk number ranging
from 2 to 10. Furthermore, we fine-tune the walk direction coeffi-
cient 𝑞 within the interval [0.5, 1].

4.1.4 Experimental Environment. Our experiments are conducted
on the machine with Intel(R) Xeon(R) Platinum 8468V, NVIDIA
H800 PCIe, and CUDA 12.2. The operating system is Ubuntu 20.04.6.
As for the software, we use Python 3.8 and Pytorch 2.2.1.

4.2 Overall Performance
4.2.1 An Innovative Learning Architecture. To answer Q1, we con-
duct comparative experiments to evaluate the performance of DiRW
in node classification. The results presented in Tab. 2 demonstrate
that, as a novel DiGNN, DiRW achieves exceptional performance
across all datasets, outperforming the leading DiGNN, MagNet, by
an average of 3.2%. This improvement is attributed to its effective
modeling of digraphs and heterophilous relationships.

In contrast, traditional undirected GNNs perform well in ho-
mophilous scenarios but struggle in heterophilous digraphs due to
their reliance on simplistic undirected adjacency matrix approaches.
While Dir-GNN and ADPA attempt to address heterophily through
digraph modeling, their methods exhibit limitations in generalizing
effectively to homophilous digraphs. Furthermore, although undi-
rected PathGNNs show potential in modeling heterophilous graphs,
their performance is significantly compromised by neglect of edge
direction and simplistic walk strategies. Notably, they fail to ac-
count for edge directionality in digraphs, and their simplistic walk
strategies limit their effectiveness in complex digraph structures.

Emphasize that the sophisticated model architectures like RNNs
in PathGNNs cause scalability issues, leading to out-of-memory
(OOM) errors with large-scale graphs like ogbn-arxiv and ogbn-
products. Similarly, the intricate message-passing paradigm with
multiple convolutional layers in DGCN and NSTE often leads to
incomplete training within 12 hours, resulting in out-of-time (OOT)
errors. In contrast, DiRW demonstrates high efficiency and superior
performance on large-scale digraphs through its weight-free path
sampling strategy and lightweight learning mechanism.
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Table 4: Model performance (%) in link direction prediction. The best result is bold . The second result is underlined.

Models CoraML CiteSeer WikiCS Amazon Chameleon Actor Rating ArxivComputers

GCN 83.63±0.74 74.29±0.73 72.97±0.23 92.42±0.14 87.98±0.48 58.37±1.34 50.16±0.74 82.24±0.12
GAT 81.28±3.40 79.33±2.24 70.18±9.71 67.35±0.85 85.80±1.83 54.13±0.42 50.84±0.88 76.55±4.46
DGCN 89.47±0.25 85.09±0.29 87.02±0.08 95.67±0.13 91.38±0.58 82.58±0.66 78.96±0.10 OOT
DiGCN 88.15±0.57 87.99±1.77 85.38±0.19 96.45±0.09 89.84±0.61 82.77±0.44 80.92±0.05 92.71±0.04

DiGCNappr 84.96±0.23 82.50±0.51 83.41±0.10 95.72±0.07 91.54±1.25 81.60±0.25 78.92±0.06 91.71±0.01
NSTE 90.10±0.59 87.86±0.60 87.69±0.15 95.49±0.56 91.28±0.69 79.74±0.20 80.29±0.39 92.31±0.07
DIMPA 90.48±0.33 86.83±0.50 82.54±0.15 95.65±0.16 89.68±0.69 82.33±0.24 83.06±0.06 93.56±0.12
MagNet 89.25±0.34 85.13±0.60 89.07±0.10 96.73±0.07 90.64±1.18 83.69±0.39 82.75±0.18 93.91±0.04
MGC 89.97±0.64 81.79±1.63 86.66±0.17 86.86±0.46 89.15±0.97 67.84±0.37 72.39±0.17 87.65±4.27

LightDiC 88.87±0.46 87.99±0.46 88.77±0.06 95.30±0.05 90.27±0.36 82.39±0.35 81.59±0.07 92.73±0.01
Dir-GNN 88.95±0.45 86.34±0.99 88.87±0.05 96.93±0.03 91.97±0.63 85.89±0.17 85.01±0.05 94.73±0.05
ADPA 90.28±0.78 88.57±0.68 88.85±0.14 96.66±0.06 89.52±0.83 84.88±0.34 82.69±0.24 93.81±0.04

RAWGNN 89.92±1.21 87.01±1.04 83.48±0.8 94.93±0.18 89.95±1.21 85.34±0.46 73.26±0.43 OOM

DiRW 91.05±0.57 88.96±1.38 88.79±0.49 97.15±0.24 92.19±1.17 85.56±0.39 85.49±0.34 95.27±0.08

4.2.2 A Plug-and-Play Approach. In addition to evaluating DiRW
as an innovative neural architecture, we also integrate its optimized
path sampler with other PathGNNs, specifically combining DiRW
with RAWGNN and PathNet for digraph modeling. However, due to
the complicated path and node embedding learning rules designed
in these two models, it is tough for the weight-free adaptive walk-
ing length and number in DiRW to generalize to them. Therefore,
we only incorporated the direction-aware sampling strategy and
walking probabilities that consider both topological structure and
node profiles into these two models to assess their performance.
The results are demonstrated in Tab. 3.

The results provide strong evidence that our optimized path
sampler significantly enhances the performance of both RAWGNN
and PathNet. The performance gains stem from the shortcomings
of the original PathGNNs, which fail to consider adequately the
directionality of edges in digraphs, leading to a substantial loss
of valuable information. DiRW corrects it by balancing the edge
directionality and existence into its sampling process, effectively
capturing the intricate topological structures inherent in digraphs.
Moreover, our walking probabilities, which account for topological
structure and node profiles, outperform those of RAWGNN and
PathNet, which focus solely on topology. By modeling node similar-
ity, DiRW effectively captures one-hop homophily in heterophilous
contexts. This integration not only enhances performance when
DiRW is used as a plug-and-play module with other PathGNNs but
also highlights the adaptability and robustness of our approach.

4.2.3 Performance in Link Prediction. We extend the evaluation of
DiRW through a multi-task framework, investigating both node
classification and directional link prediction capabilities, with the re-
sults presented in Tab. 4. We directly leverage the node embeddings
derived from Eq. (10) and concatenate them to form discriminative
edge embeddings, thereby bypassing the need for additional node
classifier as specified in Eq. (11). This concatenated vector serves as
a comprehensive representation of the edges, preserving the geo-
metric relationships encoded during the walk aggregation phase
while maintaining architectural simplicity.

Table 5: Ablation study performance (%).

Models CiteSeer WikiCS Chameleon Rating

w/o Dir 65.11±1.77 79.65±0.18 42.47±1.07 45.59±0.16
w/o Topo 64.26±0.17 79.37±0.13 38.97±2.64 45.79±0.18
w/o Feat 65.77±1.28 79.27±0.13 41.65±1.73 45.62±0.25
w/o Att 65.02±0.75 79.26±0.32 39.59±2.23 42.55±0.39

DiRW-Gate 65.65±0.84 79.52±0.28 38.76±3.56 42.68±0.15
DiRW-JK 63.88±1.02 79.31±0.25 40.21±3.82 42.74±0.33
DiRW 65.88±1.41 79.87±0.08 43.92±0.23 46.13±0.39

The experimental outcomes provide compelling evidence that
DiRW achieves an average performance gain of 0.82% over the
second leading model Dir-GNN. The efficacy of DiRW in link pre-
diction is a testament to its ability to capture the subtleties of graph
structure and the nuanced relationships between nodes. This capa-
bility stems from the model’s sophisticated path sampling strategies
and attention-based aggregationmechanism, which allow for a deep
understanding of the digraph’s topology and node features.

It is important to note that traditional undirected GNNs have
exhibited subpar performance and suffer from structural isomor-
phism issues in direction-sensitive tasks. The primary reason for
this deficit lies in the direction-agnostic message-passing in undi-
rected architectures, which fails to discriminate between (𝑢 → 𝑣)
and (𝑣 → 𝑢) edge semantics. In contrast, DiRW’s design explicitly
accounts for edge directionality, providing it with a distinct advan-
tage in tasks where the direction of relationships is pivotal. This
comparative analysis underscores the importance of adopting mod-
els that can accommodate the directed nature of graphs, thereby
offering a more accurate representation of the underlying structure
and relationships within the data.

4.3 Ablation Study
To answer Q2, we have conducted a series of ablation studies to
ascertain the individual contributions of the five core components
that constitute the backbone of DiRW.
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Figure 4: Performance and running time of DiRW and its variants w/o personalized walk length and adaptive walk number.

We began with the direction-aware path sampler by setting the
walk direction coefficient 𝑞 to 1, simulating a scenario without
directionality (w/o Dir). Then, we conducted separate ablations
for the topology-based (w/o Topo) and feature-based (w/o Feat)
walk probabilities to assess the relative importance of node pro-
files and topological structure in guiding the walk. Additionally, we
conducted an ablation experiment on our node-wise attentionmech-
anisms, replacing them with direct averaging of path embeddings
(w/o Att), Gate attention [1] (DiRW-Gate), and JK attention [39]
(DiRW-JK). The outcomes are detailed in Tab. 5.

Furthermore, to assess the adaptive walk length and numbers, we
replace themwith predefined and fixed hyperparameters and depict
the outcomes in Fig. 4. We measured the performance and running
time across varying walk lengths and numbers while keeping other
hyperparameters consistent with DiRW. From these results, we
draw the following conclusions:

Direction-aware path sampler. By effectively balancing the
direction and existence of edges, the direction-aware path sampler
has significantly enhanced the model’s capacity to capture the
intricate topological structures of digraphs, leading to an average
performance improvement of 1.5%.

Multi-order walk probability. The topology-based high-order
walk probability shows a clear advantage in detecting homophilous
patterns, leading to significant improvements in predictive per-
formance. Moreover, the feature-based one-order walk probability
achieves an average performance increase of 1.9%, underscoring
feature information’s importance in guiding walk preferences.

Node-wise learnable path aggregator. By utilizing our atten-
tion mechanism, DiRW effectively distinguishes between produc-
tive and unproductive sampling sequences, leading to high-quality
node embeddings and an average performance boost of 5.36%. The
node-wise attention mechanism employs a dual MLP, which cap-
tures complex nuances in path embeddings more effectively than
the single MLP used in the JK and Gate attention mechanisms.

Homophily entropy-based personalized walk length. The
personalized walk length greatly enhances DiRW’s performance,
outperforming static walk length models that require significant
pre-processing and often yield sub-optimal results. In contrast,
DiRW leverages the homophily entropy to sample high-quality
paths, streamlining the sampling process for optimal effectiveness.

Adaptive walk number. Echoing the success of the personal-
ized walk length, the adaptive walk number also demonstrates a
significant performance improvement over models that utilize a
rigid walk number. It comes from our systematic evaluation of the
information richness in sampling more informative walk sequences.
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Figure 5: The Time-Accuracy performance comparison of
DiRW and other DiGNNs.

4.4 Efficiency Analysis
To address Q3, we conducted experiments to evaluate the efficiency
of DiRW. We selected a spatial-based baseline, ADPA, and two
spectral-based baselines, Magnet and LightDiC, to benchmark their
performance and efficiency. The metric for efficiency was estab-
lished based on the total time required to run each model five times,
with the results graphically depicted in Fig. 5.

From the visual representation, it is evident that the superi-
ority of DiRW lies in both predictive accuracy and operational
efficiency. Although optimal adaptive walk lengths and numbers
vary between datasets, causing some fluctuations in computational
time, DiRW achieves the best performance and efficiency due to its
lightweight learning mechanism. ADPA is consistently the most
time-consuming model, largely due to its intricate architecture, fea-
turing hierarchical attention mechanisms and multiple convolution
layers, which increases its computational and resource complexity.

Notably, the sampling stage constitutes the primary computa-
tional bottleneck in DiRW’s workflow, accounting for the majority
of its running time. By adopting a pre-processing strategy analogous
to PathNet, where we precompute and store sampled sequences, we
can substantially optimize the training pipeline’s efficiency. This
preparatory approach synergizes effectively with DiRW’s dedicated
rapid learning mechanism, facilitating more accelerated training.
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4.5 Sensitivity Analysis
To evaluate the impact of hyperparameters on performance, we
conducted an in-depth analysis of the minimum walk length 𝑙𝑚𝑖𝑛

and the minimum walk number 𝑛𝑚𝑖𝑛 in Fig. 6. All other parameters
were kept constant to isolate the effects of 𝑙𝑚𝑖𝑛 and 𝑛𝑚𝑖𝑛 .

Our analysis reveals a clear trend of improved performance as
the minimum walk number 𝑛𝑚𝑖𝑛 increases. However, while more
walks enhance performance, this cannot be pursued indefinitely
due to the accompanying rise in time and space complexity.

The impact of 𝑙𝑚𝑖𝑛 is less straightforward. There is no obvious
performance improvement or decrease as 𝑙𝑚𝑖𝑛 increases. Notably, in
homophilous digraphs (e.g., Coraml, WikiCS), shorter walk lengths
yield better performance. Conversely, in heterophilous digraphs
(e.g., Actor, Rating), longer walk lengths are linked to superior
performance. This aligns with our earlier discussions on high-order
homophily in heterophilous graphs, indicating that longer walks are
crucial for capturing complex relationships within these structures.

4.6 Path Quality Analysis
We conducted an in-depth analysis comparing the path quality
sampled by our optimized path sampler with those generated by
the DFS and BFS utilized in RAWGNN, measured by the homophily
entropy in Eq. (7). The experimental outcome is shown in Fig. 7.

The results demonstrate that the paths sampled by DiRW con-
sistently exhibit lower homophily entropy compared to those pro-
duced by DFS and BFS. This superiority is primarily attributed to
the integrated consideration of both topology and feature in the
walk probability, coupled with the adaptive walk length guided by
homophily entropy. Furthermore, the DFS demonstrated the high-
est homophily entropy in most scenarios because BFS explores the
immediate neighborhood, which aligns well with the homophily

assumption. However, in scenarios characterized by strong het-
erophily (e.g., Actor), DFS outperforms BFS. DiRW achieves a har-
monious balance between these two approaches, leveraging the
strengths of both while mitigating their respective weaknesses.

5 CONCLUSION AND FUTUREWORK
In this work, we emphasize the necessity of DiGNNs for modeling
digraph-structured data and introduce the DiPathGNN mechanism
to capture inherent homophilous information in digraphs. Our
empirical analysis reveals the limitations of current PathGNNs,
particularly their overlook of edge direction and coarse-grained
sampling strategies. To overcome these challenges, we propose
DiRW, a novel path-based digraph learning method characterized
by its direction-aware path sampler, which is fine-tuned based on
walk probability, length, and number. Additionally, DiRW utilizes
a node-wise learnable path aggregator to create nuanced node
representations. Experiments show that DiRW achieves state-of-
the-art performance in node- and link-level tasks, particularly in
heterophilous scenarios, providing an efficient and robust solution
for digraph learning. Looking ahead, several promising directions
for future research emerge. First, we plan to explore more efficient
sampling strategies. Then, developing adaptive sampling methods
would also improve model performance. Lastly, designing improved
learning mechanisms to capture the complex relationships in di-
graphs may yield more accurate predictions. These future efforts
will deepen our understanding of digraph learning and could lead
to breakthroughs in modeling complex digraph-structured data.
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